
Neural Networks 20 (2007) 424–432
www.elsevier.com/locate/neunet
2007 Special Issue

Learning grammatical structure with Echo State Networks

Matthew H. Tonga,∗, Adam D. Bicketta, Eric M. Christiansenb, Garrison W. Cottrella

a Department of Computer Science and Engineering, University of California at San Diego, 9500 Gilman Drive, Dept 0404, San Diego, CA 92093-0404, USA
b Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, USA

Abstract

Echo State Networks (ESNs) have been shown to be effective for a number of tasks, including motor control, dynamic time series prediction,
and memorizing musical sequences. However, their performance on natural language tasks has been largely unexplored until now. Simple
Recurrent Networks (SRNs) have a long history in language modeling and show a striking similarity in architecture to ESNs. A comparison of
SRNs and ESNs on a natural language task is therefore a natural choice for experimentation. Elman applies SRNs to a standard task in statistical
NLP: predicting the next word in a corpus, given the previous words. Using a simple context-free grammar and an SRN with backpropagation
through time (BPTT), Elman showed that the network was able to learn internal representations that were sensitive to linguistic processes that
were useful for the prediction task. Here, using ESNs, we show that training such internal representations is unnecessary to achieve levels
of performance comparable to SRNs. We also compare the processing capabilities of ESNs to bigrams and trigrams. Due to some unexpected
regularities of Elman’s grammar, these statistical techniques are capable of maintaining dependencies over greater distances than might be initially
expected. However, we show that the memory of ESNs in this word-prediction task, although noisy, extends significantly beyond that of bigrams
and trigrams, enabling ESNs to make good predictions of verb agreement at distances over which these methods operate at chance. Overall, our
results indicate a surprising ability of ESNs to learn a grammar, suggesting that they form useful internal representations without learning them.
c© 2007 Published by Elsevier Ltd

Keywords: Echo state networks; Simple recurrent networks; Grammar learning
1. Introduction

An Echo State Network (or ESN) is a type of three-layered
recurrent network with sparse, random, and crucially, untrained
connections within the recurrent hidden layer. The scale of
the internal connections is set so that the networks possess
the Echo State Property: if given a long enough sequence, the
network will always end up in the same state, regardless of
the starting state. In other words, its internal state “echoes” the
input sequence. The activation of the hidden units (also known
as the echo layer or reservoir) is a product of the dynamics
created by the internal random weights and the input, which
are connected to the echo layer through weights that are also
sparse, random, and untrained.1 Given this setup, only one layer
∗ Corresponding author. Tel.: +1 858 534 5948.
E-mail addresses: mhtong@ucsd.edu (M.H. Tong), abickett@ucsd.edu

(A.D. Bickett), echrist1@swarthmore.edu (E.M. Christiansen),
gary@ucsd.edu (G.W. Cottrell).

1 Some versions also allow feedback from the output layer. These are not
used in our work.

0893-6080/$ - see front matter c© 2007 Published by Elsevier Ltd
doi:10.1016/j.neunet.2007.04.013
of weights must be trained, namely those leading to the output.
These can be trained using any applicable fitting procedure,
removing the need for lengthy, iterative training. Echo State
Networks have been shown to be effective in a variety of
domains (Eck, 2006; Jaeger, 2001, 2002; Salmen & Plöger,
2005). However, we could find no prior work in applying ESNs
to natural language tasks, although work concurrent with ours
(Frank, 2006a) begins to address some of these issues.

Elman’s Simple Recurrent Networks (SRNs) are commonly
used to model language oriented tasks. SRNs have an identical
architecture to the ESNs just described, with two major
differences. First, the input and internal connections are dense
(usually complete connectivity is used) and all of the weights
are trained, using truncated backpropagation through time
(Williams, 1989). Thus, the main difference between SRNs and
ESNs is the use of learning to develop internal representations
in the service of a particular task. The basic architecture of the
two networks is depicted in Fig. 1.

The task described in (Elman, 1991) is to predict the next
word in a corpus of sentences given the previous words.

http://www.elsevier.com/locate/neunet
mailto:mhtong@ucsd.edu
mailto:abickett@ucsd.edu
mailto:echrist1@swarthmore.edu
mailto:gary@ucsd.edu
http://dx.doi.org/10.1016/j.neunet.2007.04.013

M.H. Tong et al. / Neural Networks 20 (2007) 424–432 425
Table 1
Grammar used for training and test sets

S→NP VP “.”
NP → PropN | N | NRC
VP → V | V NP
RC → who NP V | who VP
N → boy | girl | cat | dog | boys | girls | cats | dogs
PropN → john | mary
V → chase | feed | see | hear | walk | live | chases | feeds | sees | hears | walks | lives
With these additional restrictions:

• Number agreement between N & V within a relative clause and between the head N and subordinate V.
• Verb arguments:

◦ Hit, feed: require direct object (VP→V NP)
◦ See, hear: optionally allow direct object (VP → V | VNP)
◦ Walk, live: preclude direct object (VP→V)

• In the rule RC→who NP V, the Verb in the V must allow a direct object
Fig. 1. Network architectures used in the experiments. Connections between
layers are displayed as arrows, with fixed connections displayed as dotted lines
and trained connections as solid lines. The recurrent connections are often
presented as a connection between the hidden layer and itself, but showing
the context layer (a copy of the state of the hidden layer at the previous time
step) makes the learned connections more explicit and the connection between
the two networks more clear. Labels on connections correspond to the weight
matrices are described in Section 3.1.

Because the next word is not completely determined, the best
a network can do is to output a probability distribution over
the possible next words. Outputting the correct probability
distribution in each context inherently requires sensitivity
to the underlying grammar. For his work, Elman defined
a recursive grammar for a subset of English that included
subject–verb agreement and relative clauses (see Table 1).
Simple Recurrent Networks achieve what he describes as
a “high level of performance in prediction” on this task
(Elman, 1991). The network’s predictions reflect sensitivity to
subject–verb agreement across intervening relative clauses, the
gap structure of relative clauses, and the transitivity of the
verbs. Interestingly, the network was unable to achieve this
performance without a staged training procedure, which began
with simple sentences, and gradually added more complex
sentences to the training set, which Elman related to memory
limitations during development (Elman, 1991, 1993).

The primary goal in this work is to assess whether an Echo
State Network is able to perform comparably to an SRN on a
natural language task, despite the drastic differences in training
procedures. In particular, it is of interest whether the ESN can
perform a language task that requires a significant amount of
memory and generalization. Elman’s task is a simplified natural
language problem that nevertheless addresses several key
aspects of English grammar, and hence a network that cannot
alter its internal representations might be expected to fail.
In particular, Elman’s analysis of the internal representations
of his network shows dimensions of the state space that are
sensitive to the number of the subject, the transitivity of the
verb, and the relative clause structure of the sentence. His
analysis also shows that the network only stores what is
required to perform the prediction task (such as the number of
the subject), and only for as long as it is required by the task
(up until the agreeing verb is reached). Elman sees the ability
to learn such linguistically-sensitive internal representations as
crucial for performing the task. Here, we will show that learning
such internal representations is not as crucial as one might
think.

2. Related work

In work concurrent with that presented here, Frank (2006a)
also uses SRNs and ESNs to process a subset of the English
language. However, this work focused on demonstrating that
recurrent networks can handle weak systematicity, defined as
the ability to process sentences containing novel combinations
of words. The grammar used was a small regular grammar,
with three basic sentence forms with at most one recursive
relative clause. While the paper demonstrates the ability of
SRNs and ESNs to correctly process novel token strings,
it does not address the recursive nature of language or the
necessity of tracking long term dependencies. In contrast, our
work places little emphasis on weak systematicity, but uses a
context-free grammar with dependencies that span a significant
amount of intervening material (such as verb agreement in
the context of subject relative clauses) to test whether the

426 M.H. Tong et al. / Neural Networks 20 (2007) 424–432
memory capacity of ESNs is sufficient to have potential in
language modeling. Our context-free grammar is bounded by a
maximum sentence length of 11 words, and could technically
be expressed as a regular grammar; however, the multiple
layers of recursion (up to three), variations in verb transitivity,
and agreement dependencies would make the number of rules
prohibitive. We also chose to emphasize a direct comparison
with Simple Recurrent Networks, using the same grammar and
task as (Elman, 1991), which established the usefulness of
Simple Recurrent Networks in natural language. A later work
(Frank, 2006b) looked at ESNs trained on a similar grammar
to (Elman, 1991), including dependencies and recursion.
However, the assessment examines strong systematicity using
probe sentences with one layer of recursion. Our work is
therefore unique in measuring performance over multiple layers
of recursion with dependencies spanning large distances. Both
works by Frank use a variation on the basic ESN architecture,
with linear units in the reservoir and a hidden layer between
the echo state layer and the output layer. Frank suggests that
the hidden layer is necessary in order to achieve the types of
generalization involving the type of systematicity that he tests
for. We find that this additional layer is not necessary for our
task. The main difference from Frank’s work is that our training
and testing grammars are identical, even though the testing set
contains entirely novel sentences.

3. Methods

3.1. Network architectures

Echo State Networks (Jaeger, 2001) are recurrent neural
networks, typically with three layers: an input layer, a recurrent
hidden layer, and an output layer. Echo State Networks
distinguish four sets of weights: Win, weights from the input
layer to the hidden layer, Whidden, the recurrent connections
from the previous state of the hidden layer to the current
hidden layer, Wback, recurrent connections from the previous
output to the hidden layer, and Wout, the connections from
the input and hidden layers to the output layer. Depending on
the task, the back connections in Wback are often omitted; we
have done so here, as at any point in time the previous time
step’s output units are only a noisy version of the current step’s
inputs. Typically, either tanh or linear activations are used, with
training significantly simplified if output units are linear, or if
the outputs can be assumed to be in the linear range of the
tanh function. Here we used a tanh activation function for the
hidden units and linear output units. We describe the activation
of the units at time step t by the vector A(t). Computation of
the network can then be defined as:

Ahidden(t) = tanh(Win(Ain(t)) + Whidden(Ahidden(t − 1)))

Aout(t) = Wout(Ain(t), Ahidden(t)).

All weights except Wout are fixed prior to training with random
values chosen to ensure that there will be echo states. The Echo
State Property (the defining property of Echo State Networks)
states that given a long (approaching infinite) string of input,
the hidden state of the network will be uniquely determined
by the input history. In practice, the existence of echo states
is achieved by giving random, sparse connections to the hidden
layer (Win and Whidden) and scaling the recurrent connections
(Whidden) to have a spectral radius less than one. The magnitude
of the spectral radius determines the persistence of memory; the
closer the spectral radius is to one, the longer the history that
determines the current hidden state. To scale the initial weights
W′

hidden to a desired spectral radius α (0 < α < 1), we calculate
Whidden as:

Whidden =
αW′

hidden
|λmax|

where λmax is the maximum eigenvalue of W′

hidden.
Once these weights have been assigned, the network may

be trained. Since the connections to the hidden layer (Win and
Whidden) are fixed and do not depend on the outputs of the
network, the state of the hidden layer is independent of the task
facing the network, and is entirely driven by the input and the
network’s internal dynamics. During training, the hidden layer
is first presented with a series of inputs to allow its internal
dynamics to settle. To accomplish this, we used a full pass over
the training set, during which the weights are not trained. Once
the network is thus primed, the hidden layer is observed as it is
presented with the training set. Training consists only of setting
Wout to map these states to the desired outputs; if the output
unit activations are linear or approximately linear, a simple
linear regression can be used to train these connections. This
frees the Echo State Network from the lengthy training process
associated with iterative methods such as backpropagation.

The hidden layer of the Echo State Networks we use in
this work consisted of sigmoidal (tanh) units, and ranged in
size from 50 to 1000 units. Internal weights (Whidden) were
non-zero with a probability of .27, and were scaled to have a
spectral radius of .98. Weights from the input to the hidden
layer (Win) were non-zero with a probability of .2 and were
uniformly sampled from [−.5, .5]. These values were obtained
by a parameter search on a separate training set, using values
reported in (Jaeger, 2001) as a guide. Overall, we found that
adjustment of the weight parameters had surprisingly little
effect. Weights from the input and hidden layers to the output
layer (Wout) were set using a simple linear regression over the
weights using the teaching signal. The network code was based
on (Cernansky, 2005). It is worth noting again that without back
connections, the internal representations are solely a product of
the dynamics due to the random recurrent weights and the input,
with no influence from the actual prediction task.

In contrast, the Simple Recurrent Network used in (Elman,
1991) learns internal representations specific to the grammar.
While the basic structure and operation of an SRN is identical
to the ESNs described above, all three weight matrices are
trained using backpropagation of error. Since backpropagation
in recurrent networks is difficult due to the fact that error can
be propagated back to all previous time steps in the series,
SRNs take the approach of stopping the propagation at the
previous time step. Thus, the gradient used in backpropagation
is an approximation to the true gradient, which would require
significantly more memory (Williams, 1989). Elman’s view

M.H. Tong et al. / Neural Networks 20 (2007) 424–432 427
is that this makes the training procedure more cognitively
plausible, being local in time and space. As shown in Fig. 1, this
can be implemented by using a context layer whose contents
are the state of the hidden layer at the prior time step. Elman’s
networks operate by learning an internal representation that
facilitates the combination of previous states and input such that
a mapping to the desired output is achievable.

In order to compare ESNs with SRNs on the performance
measures we used, we trained an SRN on the task. Following
(Elman, 1991), the SRN we implemented had 70 hidden units.
In some versions of SRNs, additional non-recurrent layers
are added between the input and hidden layers and between
the hidden and output layers, in order to form distributed
representations of the words. We found these additional layers
unnecessary to achieve performance comparable to Elman’s
(1991) results, so they were omitted to maintain architectural
similarity with Echo State Networks. The hidden units used
tanh activation functions, while the output units used logistic
activation functions. Training was performed using Netlab’s
(Nabley & Bishop, 2003) scaled conjugate gradient descent
using the cross entropy error criterion. Elman reported that
training in stages was necessary for his SRN to successfully
learn its hidden representations and perform the prediction
task. We also used staged training here, iteratively training the
network on sets comprised of 0%, 25%, 50% and 75% complex
sentences. Complex sentences are defined here as sentences
containing at least one relative clause. The final training sets
were identical to the ones used for the ESN experiments. The
resulting network was then tested on the same test sets of 75%
complex sentences used for the ESN networks. The datasets
are described in detail in Section 3.2 below. Simple Recurrent
Networks were given 1000 passes of the data to train their
connections, compared to the dual pass (once to settle, once
to train) allowed ESNs.

As a performance baseline for the networks, we compare the
networks’ performance against bigram and trigram models. The
bigram, which is simply the empirical conditional probability
distribution over the next word given the current word, provides
a reference as to whether the networks are able to learn any
knowledge of the grammar. Comparison against the trigram, the
empirical conditional probability distribution of the next word
given the previous two words, tests the networks’ incorporation
of the memory of the previous time step. The empirical
distributions for bigrams and trigrams were created by keeping
a count of the occurrences of each pair or triplet, respectively, in
the training set, and dividing these counts by the total amount of
pairs or triplets. While the size of the training set was sufficient
to cover most valid word combinations, the estimates were
smoothed by adding one to the count of each word pair and
word triplet. The bigram and trigram word probability estimates
can be given as

Pbigram(w(t + 1) = a|w(t) = b)

=

1 +
∑

s∈train
1(w(s + 1) = a)1(w(s) = b)

∑ (
1 +

∑
1(w(s + 1) = i)1(w(s) = b)

)

i∈words s∈train
Ptrigram(w(t + 1) = a|w(t) = b, w(t − 1) = c)

=

1+
∑

s∈train
1(w(s+1)=a)1(w(s)=b)1(w(s−1)=c)

∑
i∈words

(
1+

∑
s∈train

1(w(s+1)=i)1(w(s)=b)1(w(s−1)=c)

)

where w(t) refers to the presented word at time t, 1(·) refers to
the indicator function, train refers to the set of time steps from
the training set, and a, b, and c are words in the language.

3.2. Stimuli

The network stimuli were based on those in (Elman, 1991).
Inputs consist of a sequence of sentences, presented one word at
a time. Each word is represented in a localist fashion, as a vector
of length 24 which is all zeros except for a single one to signify
the current word. For example, the word ‘boy’ is represented
as a one followed by 23 zeros. Two words with the same root
but which differ in number have different encodings; thus ‘boy’
and ‘boys’ are treated as entirely different tokens. The inputs
are therefore completely orthogonal and do not encode any
grammatical information. The network’s target output is the
vector corresponding to the following word in the sequence.
To scale the activations appropriately for the tanh hidden units
in the ESNs and the SRNs (LeCun, Bottou, Orr, & Müller,
1998), the inputs (and target outputs) were shifted by −.5 to
be between −0.5 and 0.5. The lexicon of consists of 24 tokens
including 10 nouns, 12 verbs, the relative pronoun ‘who’, and
a period. The input sentences were based on the context-free
grammar used in (Elman, 1991), which is given in Table 1.
The grammar allows for simple relative clauses, requires verbs
to agree in number with their respective nouns, and features
transitive, intransitive, and optionally transitive verb types.

We developed five sets of data of 10,000 randomly generated
sentences. These sets were divided into disjoint training and
test sets with 90% of the sentences being used for training,
and 10% for testing. Ground truth probabilities were calculated
along with the creation of the datasets, reflecting the actual
distribution in the grammar over words at each time step.
Sentences containing at least one relative clause (“complex
sentences”) comprised 75% of the corpus. The sentences
generated were up to 11 words in length, and had an average
of 6.37 words per sentence (just over the 5–6 words used
in a sentence with one layer of recursion). Elman’s dataset
included a few sentences of length 16, but averaged 6.03 words
per sentence. As described in 3.1, we allowed for the staged
training approach Elman required for SRNs by also generating
training sets of 0%, 25%, and 50% complex sentences. These
additional training sets were only used to train the SRNs. We
report average results on the test set over these five datasets.

4. Performance analysis

The network’s output was evaluated by comparing it to
the context-dependent likelihood vector for the desired output.
Because sentences were generated from sentence schemas that
could be enumerated, we calculated the exact probability of

428 M.H. Tong et al. / Neural Networks 20 (2007) 424–432
Fig. 2. Network output activations and actual probabilities for the sentence “Boy who walks sees cats” for ESNs and SRNs.
potential next words given the preceding words. This strategy
becomes increasingly infeasible as sentence lengths grow,
realistically limiting the maximum sentence length to 11 or 12
words (11 was used here). This differs slightly from (Elman,
1991), who used the empirical probabilities of the training
corpus.

Fig. 2 shows the actual outputs of an ESN and SRN on
the sentence “Boy who walks sees cat.” compared with the
actual probabilities. Since we had shifted the targets for the
ESNs to the [−0.5, +0.5] range, we first added .5 back to the
outputs to convert them back to the [0.0–1.0] range for ease
of visualization. Some unit’s outputs were below −0.5, which
results in values below 0 after shifting them back. We simply
set these to 0 before comparing them to the targets. No units
were above 1 after the shift. While these outputs are similar to
the actual probabilities, it should be noted that they do not truly
act as a probability distribution over the words as they are not
guaranteed to sum to one.

4.1. Metrics

The primary comparable metric used in (Elman, 1991) was
the cosine between the output and the empirical probability
vectors, so we also computed this score for our network, only
using the actual likelihoods from the grammar. The cosine score
between two vectors is defined as

cos(x, y) =
x · y

‖x‖‖y‖
.

Here x and y are our network’s output and the actual
probabilities in the grammar, respectively. The reported score
is the average cosine over the test set. In addition to providing
a metric of comparison between methods, the cosine score also
allowed us to check our SRN results against Elman’s results
(our SRNs actually outperform Elman’s reported cosine score
of 0.852).

Looking at the maximally predicted word for each time
step provides a second metric for measuring the success of the
network. If this word turns out to be impossible in the grammar
given the preceding words in the sentence, the network has
made a mistake in understanding the context in which it
is operating. While choosing the word that the network is
most sure of could be considered a generous error metric,
on average approximately two-thirds of the 24 words are
impossible at any point in time. Because some tokens have
a much higher probability of occurring than others, treating
the outputs without normalization skews the results. Periods
and ‘who’, for instance, are both unique function words in
the grammar that occur very frequently and in some contexts
with near or complete certainty. While nouns as a class are
quite common, there are also ten possible nouns to choose
from in contexts in which a noun can appear, making the
actual probability of a particular noun relatively small. With
a different network architecture and training procedure, where
outputs are forced to be probabilities, the normalization might
be unnecessary. However, the architecture may be unable to
avoid a skew towards words like period and ‘who’ that are

M.H. Tong et al. / Neural Networks 20 (2007) 424–432 429
more frequent and have a greater dynamic range. It therefore
makes sense to z-score (normalize them to 0 mean and unit
standard deviation) the outputs of each output unit over time
to provide a better measure of how certain the network is about
its prediction, measuring in terms of standard deviations from
mean instead of net activation. Z-scoring also benefited SRNs,
so it was used there. Since bigrams and trigrams deal in actual
context-dependent likelihoods, they do not need normalization.
The maximum prediction score is given as

scoremaxpred

=

∑
t∈test

∑
w∈words

1(w = arg max
i

Ai (t))1(pt (w) > 0)

|test|

where Ai refers to the activation of the i th output unit and pt (w)

is the ground truth probability of word w at time t .
Treating word prediction as a binary classification problem

of possible versus impossible provides a means to assess the
accuracy of all predictions at each time step, as opposed to
only the most confident prediction. For each time step, the
network’s output can be thresholded to determine which kinds
of words are “possible” and which are “impossible”. Z-scored
outputs were collapsed into their respective classes (common
nouns, proper nouns, 6 classes of verbs, who, and period) by
taking the mean activation across units for analysis, as this
is the granularity of interest. Then, receiver operator curves
(ROC) were formed by sweeping through possible thresholds
for this classification, θ . True positives (hits) occur when the
mean activation of a class is above a given threshold, while false
positives (false alarms) occur when a class is impossible despite
the class being above the threshold. Dividing the count of true
positives by the number of actually possible classes in the test
set yields the hit rate, while the false alarm rate is formed by
dividing the false positives by the count of actually impossible
classes

Hit rate =

∑
t∈test

∑
c∈class

1(Ac(t) > θ)1(pt (c) > 0)∑
t∈test

∑
c∈class

1(pt (c) > 0)

False alarm rate =

∑
t∈test

∑
c∈class

1(Ac(t) > θ)1(pt (c) = 0)∑
t∈test

∑
c∈class

1(pt (c) = 0)
.

Plotting these two rates yields an ROC curve, with the area
under the curve being an indication of performance; an area of
1 would signify perfect separability of possible and impossible
cases, while an area of 0.5 would show that the networks show
no ability to discriminate. This measure also allowed us to
examine the performance on each class of words individually.

One of the dependencies the network must maintain is the
agreement in number of a verb with its subject. For example,
given a subject of ‘John’, ‘sees’ is a possible verb while
‘see’ is not. The distance between a subject and verb can be
arbitrarily large, as in the case of “Cats who dogs who like
John chase see”. When a verb appears, the mean of the outputs
corresponding to the verbs of the correct number should be
higher than the outputs for verbs of the incorrect number. If
Fig. 3. Summary of results. For ESNs and SRNs, the parenthesized number
signifies the number of units in the hidden layer. The cosine score was the
cosine of the angle between a network’s predictions and the ground truth
probabilities. Max prediction rate is the rate at which the most strongly
predicted word is possible in the grammar. AUC is the area under the ROC
generated by determining whether a class of words is possible or impossible.
Verb agreement measured whether predicted verbs agreed in number with their
corresponding noun. See Section 4.1 for further explanation of the metrics used.

this is not the case, a verb agreement error has occurred. The
verb agreement rate is the fraction of the total number of verbs
for which the networks selected the correct number. The verb
agreement score is then

scoreagreement

=

∑
t∈test

1(w(t) ∈ verb)1(Acorrectverb(t)) > (Aincorrectverb(t))∑
t∈test

1(w(t) ∈ verb)

where Acorrectverb and Aincorrectverb refer to the average
activation of units corresponding the correct and incorrect verb
classes respectively.

4.2. Results

A Simple Recurrent Network with 70 hidden units has ap-
proximately the same number of trained connections as an Echo
State Network with 300 hidden units. At this level, Simple Re-
current Networks score higher than Echo State Networks by the
cosine and AUC metrics, while ESNs outperform SRNs in max
prediction rate and verb agreement. These results are displayed
in Figs. 3 and 4. However, the differences in performance for
cosine and AUC were highly significant (p < .01), while the
gains by ESNs in max prediction rates were only marginally
significant (p < .05) and insignificant in verb agreement.

However, adding additional units to an Echo State Network
comes cheaply, because trained connections scale linearly with
the number of hidden units. In contrast, trained connections in a
Simple Recurrent Network scale quadratically, and large hidden
layers slow training down substantially. As the number of units
in the Echo State Network increased, ESNs showed significant
improvement by all four metrics. While SRN scores on the co-
sine and AUC metrics remained higher, the difference between
the two diminished, with the difference on the cosine ceasing
to be significant when ESNs had 400 or more hidden units. The
advantages of ESNs on verb agreement and max prediction con-
tinued to increase as well, becoming highly significant.

430 M.H. Tong et al. / Neural Networks 20 (2007) 424–432
Fig. 4. Overall ROC. The parenthesized number for the two types of networks
denotes the number of units contained in the network’s hidden layer. The overall
ROC views the task of word prediction as a classification task of a class of
words being impossible in a given context. A category of words is classified
as impossible if the mean activation of its normalized output units is below
threshold across words in a class. These classifications are compared with the
ground truth probabilities to determine whether the classification was correct.

Some insight into why SRNs perform better on two metrics
can be gained by comparing their output units and training
regimes. SRNs were trained using a cross-entropy error metric
and used sigmoidal output units, while ESNs minimized
squared error and used linear outputs. These differences meant
that SRNs’ outputs more closely resembled actual probabilities,
likely improving their cosine score. In addition, the sigmoidal
outputs allow and encourage an SRN to modify its connections
into output units to drive net inputs strongly negative and
bring the output to zero. This increases the effective distance
between impossible outputs and outputs that were possible with
low probability. The linear nature of our ESN’s output layer
constrains the net input into the output units of impossible
and slightly possible words to be close together, and penalizes
equally for straying above and below zero for impossible words.

The AUC was also calculated for 6 categories of interest
(averaging AUC scores for proper and common nouns and for
the singular and plural forms of each class of verbs), with
the results displayed in Table 2. Both ESNs and SRNs are at
near perfect performance for periods, which is of particular
interest since knowing when a sentence can end is among the
most memory intensive of tasks. Both networks did worst at
predicting intransitives, likely because they are more likely
than other verbs to have dependencies spanning large amounts
of intervening material. The fact that ESN’s performance
on intransitives was particularly impacted is surprising and
warrants further study.

As expected, both networks did substantially better than
bigrams by all metrics. The networks’ performance comparison
with trigrams was a different story, however. Fundamentally,
a comparison with trigrams enables us to examine how well
a network is able to store information from the previous time
step’s input in its recurrent hidden layer. While results both
here and in the following section show that both networks
are capable of this, they tend to be more prone to noise
Table 2
Summary of AUC scores for 6 word classes of interest

Nouns Transitive
verbs

Optionally
transitive verbs

Intransitive
verbs

Who Stop

Bigram 0.93 0.84 0.81 0.78 1.00 0.84
Trigram 0.93 0.96 0.96 0.93 1.00 0.94
SRN(70) 0.96 0.96 0.97 0.94 1.00 0.98
ESN(50) 0.95 0.91 0.90 0.80 1.00 0.94
ESN(300) 0.96 0.94 0.94 0.86 1.00 0.97
SRN(1000) 0.95 0.96 0.97 0.89 1.00 0.99

The parenthesized number for the networks refers to the size of the hidden layer
of the network. Scores for singular and plural forms of verbs were averaged for
ease of reading, but were calculated separately. The ROC was calculated by
making a classification based on the mean activation of units in a category.
Classifications are then compared against the ground truth probabilities to
assess performance.

than trigrams, because trigrams explicitly store the empirical
probabilities conditioned on the previous input. Therefore, for
cases where a memory of the previous two words is sufficient
to provide the probabilities of the next word, trigrams tend to
perform better than either network. As will be further discussed
in the next section, these cases cover a large amount of Elman’s
grammar. As shown in Fig. 3, its results on three metrics are
comparable with both networks (although ESNs are able to
significantly outperform it on all but AUC with a hidden layer
with at least 750 units). Its performance on the max prediction
metric, however, shows that both ESNs and SRNs have
memories that exceed the last two words. For instance, when the
previous two words are of the form [who Vintransitive] the next
word could either be a period (Dogs chase cats who live.) or
a verb (Dogs who live chase cats.). Another common example
of this is the form [N Vtran], where the next word can either
be a noun (Dogs chase cats.), a period (John feeds cats who
dogs chase.), or a verb (Cats who dogs chase see John.). In
these cases, trigrams are forced to guess. Inspection of the
predicted words confirms that trigrams make many errors in the
cases where a two word memory is insufficient, many more than
either kind of network. This demonstrates that the networks
must be able to access longer memories with some reliability.

4.3. Verb agreement over distances

In order to further investigate the memory of the networks,
we focused on the ability of the networks to track verb
agreement over intervening material. Verb agreement errors
provide one of the best measures of whether a system has
learned the grammar. The verb agreement error described above
can be parceled out by distance, showing how performance
varies as demands on memory increase. Unfortunately, the
grammar actually offers additional information, resulting in
bigrams and trigrams performing better than expected and
reducing the difficulty of this task. Table 3 shows how memory
demands vary as distance increases, and provides example
sentences. Table 4 shows the error rates of the various systems
on this task as a function of the distance from the agreeing
noun. There is no entry for “5” or “8” because of a quirk
of this grammar — no verb can be 5 or 8 words away from
its corresponding noun. Based on the structures in Table 3,

M.H. Tong et al. / Neural Networks 20 (2007) 424–432 431
Table 3
Sample sentences of varying distances between a verb and its corresponding
noun

Distance Memory
required

Example sentence

1 1 Dogs live.
2 2 Dogs who walk live.
3 1 Dogs who walk live.
4 2 Dogs who chase cats live.
4 4 Dogs who cats chase live.
6 4 Dogs who chase cats who walk live.
6 6 Dogs who boys who walk feed live.
7 5 Dogs who chase boys who feed cats live.
7 7 Dogs who boys who feed cats chase live.
9 7 Dogs who chase cats who boys who walk feed live.
9 9 Dogs who cats who boys who run feed see live.

Distances of 5 and 8 do not appear in the grammar and are therefore not shown.
The specifics of the grammar allow information on number to be accessible in
some instances at a shorter distance than the full distance between noun and
verb, reducing the memory required. In the provided example sentence, the
target verb is given in bold and closest word determining its number is given in
italics.

bigrams and trigrams are able to perform perfectly at a distance
of 3, and trigrams perform at half of chance at distance 4.
Approximately 86% of verbs in the corpus have their number
uniquely determined by the previous two words.

Simple Recurrent Networks and Echo State Networks with
50 units perform approximately as well as trigrams here,
although ESNs in particular appear to have a noisy memory
leading to more errors. Additional hidden units significantly
increased the memory span of the ESN, such that with a
comparable number of connections to SRNs (300 hidden units),
ESNs demonstrate performance indicative of a longer term
memory. When the hidden layer is expanded to 1000 units, the
ESN performs significantly better than chance for all distances.
However, the performance at a distance of nine words requires
some qualification; sentences with dependencies of this length
are rare, and this small sampling creates a statistical irregularity
in two of our data sets whereby the previous two words bias
the probabilities towards a performance above chance. This
is reflected in the better than chance performance of trigrams
at this distance. Since the differences in performance between
trigrams and 1000 unit ESNs at this distance is not significant,
it would be presumptuous to claim a memory of length seven
for ESNs (although it is worth noting that SRNs do not show
this boost in performance at this distance). However, ESNs do
show performance indicating a memory of at least five, as they
perform above chance at a distance of seven words. This ability
to maintain information over a long range is a strong indication
that the ESN is capturing essential aspects of the grammar.

4.4. Discussion

The results demonstrate that ESNs have the ability to learn to
be sensitive to grammatical structure. The overall performance
is comparable with the results of (Elman, 1991, 1993), yet,
unlike Simple Recurrent Networks, ESNs perform this task
without specialized learned internal representations. Given the
prominence that such learned internal representations enjoy
in the literature, this is a surprising result. ESNs compensate
for this inability to learn useful representations with a large
reservoir of input-driven random dynamics that capture some
of the statistical regularities of the input.

Elman (1991, 1993) argues strongly that starting with small,
simple data sets aids in learning more complex ones. His SRNs
made use of this mechanism to enable learning a data set which
initially they were unable to learn by slowly ramping up the
complexity of the stimuli. The one-phase learning of ESNs is
incapable of making use of such a staged learning mechanism.
Nevertheless, we show here that such a mechanism is, at least
in this case, not essential.

Our comparison with the statistical baselines of bigrams and
trigrams allowed a partial quantification of the memory of these
networks. The results of the max prediction error and the verb
agreement over distances show that both kinds of networks
have memory exceeding that of trigrams. Adding units to the
hidden layer increases the capacity of networks’ memory (a
performance improvement with additional units is also reported
in (Frank, 2006a)). However, increasing the size of the hidden
layer scales substantially better for ESNs than SRNs; trained
parameters are linear in the hidden layer size, not quadratic.

One contribution of this work is to partially account for
how large numbers of randomly wired neurons can participate
in complex structured behavior. One of the mysteries of
human cognition is how the brain succeeds in “wiring” itself
with limited innate structure. Showing that even completely
random connections are nevertheless useful in producing a
Table 4
Verb agreement error by distance between a verb and its corresponding noun

Distance % of verbs Bigram Trigram SRN(70) ESN(50) ESN(300) ESN(1000)

1 28.03 0.00 0.00 0.00 0.02 0.04 0.03
2 38.15 0.53 0.00 0.00 0.00 0.00 0.00
3 14.47 0.00 0.00 0.00 0.02 0.00 0.00
4 9.93 0.48 0.23 0.39 0.47 0.29 0.08
6 5.66 0.51 0.47 0.48 0.53 0.40 0.26
7 2.34 0.51 0.50 0.45 0.48 0.46 0.43
9 1.42 0.54 0.42 0.57 0.47 0.61 0.36

The size of the hidden layer in the networks is given by the parenthesized number following their name. Entries in the table that signify verb agreement errors that
are not statistically significantly better than chance are shaded. No sentences with distances of 5 and 8 words are allowed by the grammar. The percentage of verbs
occurring at a given distance from their corresponding noun in the corpus is also given.

432 M.H. Tong et al. / Neural Networks 20 (2007) 424–432
facility as uniquely human as natural language serves to
demonstrate the power of random connections and diminish
the need to appeal to innate structure. To further the biological
connection, it may prove worthwhile to explore Liquid State
Machines (Maass, Natschläger, & Markram, 2002), which
employ similar untrained recurrent hidden layers but use more
realistic spiking dynamics and connection structures based on
cortical parameters.

In future work, we intend to pursue a more detailed analysis
of the data collected so far. From a cognitive modeling
perspective, we are interested in the sorts of errors the two
systems tend to make. The issue is whether SRNs make more
“cognitively plausible” errors than ESNs. The comparison
with SRNs indicate that the current ESNs may be suffering
unnecessarily due to their use of linear output units by making
improbable and impossible words difficult to differentiate.
Using a different output activation function and training method
would not fundamentally change the advantages of ESNs, but
may significantly improve performance. Finally, the language
generated by the grammar is both too complex, resulting in
center-embedded sentences no human can easily parse, as
well as too simple, spanning a tiny vocabulary and a small
portion of the grammar. Elman’s grammar is also not ideal for
investigating the ability of a network to learn grammars with
long range dependencies because even systems with minimal
memory (bigrams and trigrams) can capture a large amount
of the grammatical structure. The results presented here and
in (Frank, 2006a, 2006b) are insufficient to indicate whether
ESNs are capable of scaling to a large natural language corpus.
However, because their parameters scale linearly with network
size, ESNs do show some promise in this area.

5. Conclusions

Echo State Networks succeeded in producing the probabil-
ities of the next word in complex sentences. It is impossible
to determine at this time whether these results can scale up to
full natural human language. However, the results suggest that
they are capable of performing the task using a corpus that El-
man designed to answer questions he considers fundamental to
modeling language: “What is the nature of linguistic represen-
tations?”, “How can complex structural relationships such as
constituency be represented?”, and “How can the apparently
open-ended nature of language be accommodated by a fixed-
resource system?” (Elman, 1991). ESNs and SRNs, both fixed-
resource systems, were capable of accommodating the subset
of natural language used here. By applying an Echo State Net-
work to this task, we were able to show that the first two ques-
tions, at least for this corpus, may be answered by the words
“random” and “randomly”. Furthermore, ESNs achieve perfor-
mance comparable to that of SRNs without the staged learning
procedure necessary for SRNs.

What makes ESNs particularly interesting is that the hidden
layer is driven completely by the input and the dynamics
generated by randomly weighted connections. While SRNs
function by having the hidden layer learn to map functionally
identical states into the same region of the representational
space, ESNs are incapable of this kind of learning at the hidden
layer. Surprisingly, they don’t seem to require it.

Acknowledgments

The authors wish to thank Cynthia Taylor for her contribu-
tion to earlier versions of this work, Gary’s Unbelievable Re-
search Unit, and the UCSD AI research group for helpful feed-
back. This work was supported on NSF grant DGE-0333451 to
GWC.

References

Cernansky, M. (2005). Echo State Network simulator. http://www2.fiit.stuba.
sk/∼cernans/main/download.html.

Eck, D. (2006). Generating music sequences with an Echo State Network. In
NIPS 2006 workshop on Echo State Networks and liquid state machines.

Elman, J. (1991). Distributed representations, simple recurrent networks, and
grammatical structure. Machine Learning, 7, 195–224.

Elman, J. L. (1993). Learning and development in neural networks: The
importance of starting small. Cognition, 48, 71–99.

Frank, S. L. (2006a). Learn more by training less: Systematicity in sentence
processing by recurrent networks. Connection Science, 18, 287–302.

Frank, S. L. (2006b). Strong systematicity in sentence processing by an Echo
State Network. In Proceedings of ICANN 2006 (pp. 505–514).

Jaeger, H. (2001). The echo state approach to analysing and training recurrent
neural networks. Technical report GMD report 148. German National
Research Center for Information Technology.

Jaeger, H. (2002). A tutorial on training recurrent neural networks. Covering
BPTT, RTRL, EKF, and the Echo State Network Approach. GMD report
159. German National Research Center for Information Technology.

LeCun, Y., Bottou, L., Orr, G. B., & Müller, K. -R. (1998). Efficient backprop.
In G. E. Orr, & K. -R. Müller (Eds.), Neural networks: Tricks of the trade.
Berlin: Springer.

Maass, W., Natschläger, T., & Markram, H. (2002). Real-time computing
without stable states: A new framework for neural computation based on
perturbations. Neural Computation, 14(11), 2531–2560.

Nabley, I., & Bishop, C. (2003). Netlab. http://www.ncrg.aston.ac.uk/netlab/
index.php.

Salmen, M., & Plöger, P. G. (2005). Echo State Networks used for motor
control. In Proceedings of the 2005 IEEE international conference on
robotics and automation (pp. 1953–1958).

Williams, R. J. (1989). Complexity of exact gradient computation algorithms
for recurrent neural networks. Technical report NU-CCS-89-27. Boston:
Northeastern University, College of Computer Science.

http://www2.fiit.stuba.sk/~cernans/main/download.html
http://www2.fiit.stuba.sk/~cernans/main/download.html
http://www2.fiit.stuba.sk/~cernans/main/download.html
http://www2.fiit.stuba.sk/~cernans/main/download.html
http://www2.fiit.stuba.sk/~cernans/main/download.html
http://www2.fiit.stuba.sk/~cernans/main/download.html
http://www2.fiit.stuba.sk/~cernans/main/download.html
http://www2.fiit.stuba.sk/~cernans/main/download.html
http://www2.fiit.stuba.sk/~cernans/main/download.html
http://www.ncrg.aston.ac.uk/netlab/index.php
http://www.ncrg.aston.ac.uk/netlab/index.php
http://www.ncrg.aston.ac.uk/netlab/index.php
http://www.ncrg.aston.ac.uk/netlab/index.php
http://www.ncrg.aston.ac.uk/netlab/index.php
http://www.ncrg.aston.ac.uk/netlab/index.php
http://www.ncrg.aston.ac.uk/netlab/index.php
http://www.ncrg.aston.ac.uk/netlab/index.php
http://www.ncrg.aston.ac.uk/netlab/index.php

	Learning grammatical structure with Echo State Networks
	Introduction
	Related work
	Methods
	Network architectures
	Stimuli

	Performance analysis
	Metrics
	Results
	Verb agreement over distances
	Discussion

	Conclusions
	Acknowledgments
	References

